RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure.
نویسندگان
چکیده
The proteins Ctf19, Okp1, Mcm21 and Ame1 are the components of COMA, a subassembly of budding-yeast kinetochores. We have determined the crystal structure of a conserved COMA subcomplex--the Ctf19-Mcm21 heterodimer--from Kluyveromyces lactis. Both proteins contain 'double-RWD' domains, which together form a Y-shaped framework with flexible N-terminal extensions. The kinetochore proteins Csm1, Spc24 and Spc25 have related single RWD domains, and Ctf19 and Mcm21 associate with pseudo-twofold symmetry analogous to that in the Csm1 homodimer and the Spc24-Spc25 heterodimer. The double-RWD domain core of the Ctf19-Mcm21 heterodimer is sufficient for association with Okp1-Ame1; the less conserved N-terminal regions may interact with components of a more extensive 'CTF19 complex'. Our structure shows the RWD domain to be a recurring module of kinetochore architecture that may be present in other kinetochore substructures. Like many eukaryotic molecular machines, kinetochores may have evolved from simpler assemblies by multiplication of a few ancestral modules.
منابع مشابه
Molecular basis for inner kinetochore configuration through RWD domain–peptide interactions
Kinetochores are dynamic cellular structures that connect chromosomes to microtubules. They form from multi-protein assemblies that are evolutionarily conserved between yeasts and humans. One of these assemblies-COMA-consists of subunits Ame1CENP-U, Ctf19CENP-P, Mcm21CENP-O and Okp1CENP-Q A description of COMA molecular organization has so far been missing. We defined the subunit topology of CO...
متن کاملSUPPLEMENTARY INFORMATION_newfinal
The solvent-accessible surfaces of the RWD-C domains of Ctf19 and Mcm21s have crystal lattice contacts with RWD-C domains of symmetry related Mcm21 and Ctf19 molecules, respectively. These interfaces include ~ 400–480 Å of buried surface area from each protein. The three different types of intermolecular contacts of Ctf19-Mcm21 complexes in the crystal are shown. A) Hydrophobic interactions inv...
متن کاملEic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly
CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURP(Scm3), and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURP(Scm3) to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1(KNL2), which is critical for the recruitment of Mis18 and HJURP(S...
متن کاملMolecular architecture and connectivity of the budding yeast Mtw1 kinetochore complex.
Kinetochores are large multiprotein complexes that connect centromeres to spindle microtubules in all eukaryotes. Among the biochemically distinct kinetochore complexes, the conserved four-protein Mtw1 complex is a central part of the kinetochore in all organisms. Here we present the biochemical reconstitution and characterization of the budding yeast Mtw1 complex. Direct visualization by elect...
متن کاملThe kinetochore prevents centromere-proximal crossover recombination during meiosis.
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2012